
P R O M I S I N G  N E W  M E T H O D  O F  F L U I D I Z E D - B E D  

V.  A .  L y a m k i n ,  N.  I .  G e l ' p e r i n ,  
V .  G. A i n s h t e i n ,  a n d  V. L .  N o v o b r a t s k i i  

P R O B I N G  

UDC 66.096.5 

A method of fluidized-bed probing using optical f ibers  is described.  Some data are given on the 
effect of gas velocity on the frequency and ascent  velocity of the bubbles. 

For  technological p roces se s  using a fluidized bed of granular  mater ia l ,  the fluidizing agent is most  often 
gaseous. As is known [1], there then a r i ses  an inhomogeneous s t ruc ture  charac te r ized  by the appearance of 
gas bubbles in the bed, which has a significant (and somet imes  determining) effect on the p rocesses  that occur .  
In industrial  sys t ems ,  foreign bodies (heat-exchanger tubes, constructional  e lements ,  etc.) are  usually p r e -  
sent in the apparatus when the bed of solid par t ic les  is fluidized, and these play an important  role in the chemi-  
cal p rocesses  and heat and mass  t ransfer  that occur .  It is of considerable in teres t  to investigate the s t ructure  
and hydrodynamics  of the inhomogeneous bed in these conditions, especial ly in the vicinity of the elements  im-  
mersed  in the bed. 

The motion of gas bubbles in inhomogeneous fluidized beds has been studied by var ious  methods:  photo- 
graphy of surges  at the bed surface [2], t ransmiss ion  of x - r a y  beams through the bed [1, 3], immers ion  of 
var ious  sensors  in the bed [4], etc. Introducing additional foreign elements  in the bed does not always guaran-  
tee that sufficiently complete information will be obtained on its s t ructure .  In addition, in the x - r a y  probing 
of a fluidized bed the neces sa ry  exposure time is severa l  minutes [3], and therefore it is impossible to r ecord  
brief  contacts between the continuous phase and the surface of bodies immersed  in the bed. Moreover ,  the 
x - r a y  method can only be used to investigate the bed s t ructure  when the equipment is not too large - of d iam-  
e ter  up to 100 mm [1, 3]. 

There  has been much interes t  in the method of establishing the presence  of absence of the e lect r ical  c i r -  
cuit composed of the e lec t r ica l ly  conducting fluidized-bed par t ic les  and the surface of a body (e.g. [5], an 
o rgan ic -g lass  plate in which copper e lec t rodes  are  mounted flush with the surface).  Signals obtained on a 
display panel using a low-inert ia  neon lamp give a c lear  picture of the bubble motion around the plate and 
allow a number of hydrodynamic charac te r i s t i c s  of the bed to be established. Regret tably,  the use of this 
method is l imited to e lec t r ica l ly  conducting granular  mater ia l s  (often of very  high density). 

Modern technological p rocesses  involving fluidized beds operate with the mos t  diverse  granular  ma -  
te r ia l s ,  including catalysts  based on aluminum oxide and other d ie lec t r ics ,  often of low density. In the p r e -  
sent work,  an at tempt is made to develop a method of investigating the s t ructura l  pa r ame te r s  of an inhomo- 
geneous fluidized bed in the vicinity of foreign bodies that are  immersed  in it, i r respect ive  of the nature and 
the proper t ies  of the granular  mater ia l .  

The method res t s  on the use of l ight-f iber  technology - flexible optical f ibers (light conductors) opera t -  
ing on the to ta l - in terna l - ref lec t ion  principle.  In their finished state,  optical f ibers  have the proper ty  of con- 
ducting light without signal loss or dis tor t ion,  which has been used [6, 7] to automate a number of p rocesses .  

In the presen t  investigation, optical f ibers  are  used to investigate the s t ructure  of a fluidized bed con- 
sisting of glass mic rosphe re s  of d iameter  0.2-0.8 mm in the vicinity of a horizontal  glass tube (diameter 37 
mm) immersed  in the bed. The ends of 65 optical f ibers  are  led along a duralumin cylinder,  pass through its 
wall,  and are  mounted flush with its outer surface (at the corners  of squares  of side 8.5 mm). The opposite 
ends of the optical f ibers  are  inser ted into a plane rectangular  plate (a display panel) at the same spacing 
(Fig. 1). Each point (the end of an optical f iber) ,  t ransmit t ing light f rom the surface of the tube, corresponds 
to a given point on the plate (the opposite end of the optical fiber). The l igh t - t ransmiss ion  equipment (the 
s e n s o r - p r o b e )  is fitted in a horizontal  glass tube, placed in the region of the fluidized bed to be investigated. 
To illuminate the vicinity of the tube and facili tate the t ransmiss ion  of optical information to the display panel, 
a lamp is fitted close to one end of the tube. 

Transla ted  from Inzhenerno-Fiz icheski i  Zhurnal ,  Vol. 35, No. 5, pp. 884-888, November ,  1978. Original 
ar t ic le  submitted November  9, 1977. 

1348 0022-0841/78/3505-1348 $07.50 �9 1979 Plenum Publishing Corporat ion 



~ g 
/ 

Fig. i. Light-transmission equipment (sensor-probe) 
and the disposition of the llght-conversion elements (I- 
9; 1'-9') on the display panel: a) display panel; b) cylin- 
der for optical fibers; c) probe. 
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Fig. 2. Time sequence of pulses for a tube surface in 
a symmetric flow of bubbles. The figures correspond 
to the numbering of the light converters on the display 
panel. 

When the continuous phase is in contact with the tube sur face ,  the ends of the optical f ibers  on the d i s -  
play panel a re  not illuminated; if, however ,  a gas bubble is in contact with any point of the tube surface (in 
the region covered by the ends of the light f ibers) ,  then the ends of the corresponding light f ibers  light up on 
the display panel. 

Information obtained f rom the display panel may be recorded  by means of a mot ion-pic ture  camera  (the 
presen t  investigation uses a Pentaflex camera  with a f rame speed of 94 sec-i) .  However,  the p rocess ing  of 
the result ing data on motion picture film is very lengthy, because of the need to develop the motion picture 
film and to in terpre t  the resul ts  f rame by f rame.  

Rapid and more  accura te  p rocess ing  of the information obtained is achieved by using an e lect ronic  c i r -  
cuit to convert  the optical signal to an e lec t r ic  signal. The location of the l ight-convers ion elements  (SF2-2 
photores is tors)  with respec t  to the optical f ibers  on the display screen is shown in Fig. 1. 

A time sequence of pulses obtained when the tube surface is in a symmet r i c  flow of bubbles is shown in 
Fig. 2. The bubble passes  to point 1 and leads to a pulse of a given duration; when the bubble reaches  the 
second point, the pulse obtained is of the same form but at a time lag of T related to the duration of bubble 
motion between the two points. The pulse length T f rom the given point charac te r izes  its time of contact with 
the bubble. 
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Fig. 3. Real oscillogram characterizing 
the bubble flow around a tube of d iameter  
37 mm. The bed is of glass mic rosphe re s  
of d iameter  0.2-0.8 ram; the tape speed is 
250 mm/sec ;  w = 0.2 m/sec .  

The e lec t r i c  signals obtained on conversion of the light signals are  amplified in amplitude (and current)  
using a multichannel amplif ier  and recorded  on a K-105 multichannel loop osci l lograph (recording on UV-type 
l ight-sensi t ive  paper).  A typical real  osc i l logram is shown in Fig. 3. 

Using the method outlined, it is possible to r eco rd  and est imate  the velocity v b of bubble motion around 
the surface of a body immersed  in a fluidized bed (and also to judge the components of the bubble ascent  velo-  
city); the local frequency of contact of the d iscre te  and continuous phases ~c.p with the surface of the body; the 
shape and geometr ic  dimensions of the gas bubbles; the proport ion of the time f0 in which the surface is in con- 
tact  with gas bubbles. 

The method also allows the size of the transit ional  region (from the continuous to the d isperse  phase) to 
be es t imated in the case when a gas bubble approaches (or leaves) the surface of a body immersed  in the flui- 
dized bed. 

To i l lustrate  the potential of the given model,  some resul ts  of probing an inhomogeneous bed in the 
vicinity of a hor izontal  tube of d iameter  37 mm are given in Fig. 4; the resul ts  were obtained for fluidization 
in an apparatus of d iameter  300 mm and height 3000 ram; the apparatus was fitted with a perfora ted  lat t ice,  the 
fract ion of live c ross  section being 2.5~ (hole d iameter  2 ram), and the tube was 262 mm f rom the lattice. The 
static height of the bed was 400 mm ,  and the initial fluidization velocity w 0 = 0.25 m/sec.  Curve 1 in Fig. 4a 
shows that with increase  in f luidizing-agent  velocity w the frequency of bubble replacement  at the frontal  r e -  
gion of the tube increases  rapidly at f i r s t  and then, with fur ther  increase  in w, more  slowly. Curve 2 cha r -  
ac te r izes  the frequency of dislodgement of the re la t ively immobile "cap" of solid par t ic les  on the upper par t  
of the horizontal  tube (point 7 in Fig. 2). As would be expected, at low fluidizing-agent velocity,  when the bub- 
bles are  small ,  they are  not able to dislodge the par t ic les  lying along the upper generatr ix  of the tube. With 
increase  in f luidizing-agent velocity to w = 0.5 m]sec ,  marked periodic dislodgement of the sol id-par t ic le  "gap" 
appears.  F u r t h e r  increase  in gas velocity is accompanied by increase  in bubble size and frequency.  

In Fig. 4b the dependence of the gas-bubble velocity v b on the fluidizing-agent velocity w along the axis 
of the fluidized bed (curve 3) and close to the inner wall of the apparatus (curve 4) is shown. At small  w, when 
the bubbles are  small ,  their  ascent  velocity around the tube surface is approximately the same in the axial r e -  
gion of the apparatus and at the per iphery  (at the edge of the experimental  tube). With increase  in w, the bub- 
ble ascent  velocity r i ses  in accordance  with their  increase  in size - at f i r s t  rapidly and then more  slowly. 
The bubble ascent  velocity Vb is higher along the bed axis than at the wall of the appara tus ,  which indicates 
that motion of the air  occurs  predominantly in the axial regions of the bed. 

Note that at small  f luidlzing-agent  velocity w the greates t  value of % p is observed in the la teral  region 
of the tube (Fig. 4a). The osc i l lograms  obtained are  in good agreement  with experimental  resul ts  [1] on the 
local hea t - t r ans fe r  coefficient ~ at the pe r ime te r  of a horizontal  tube: at small  gas veloci t ies  the la rges t  values 
of a are  in fact  observed in the la tera l  region of the tube, and the smal les t  at the frontal  and edge regions.  The 
potential of the present  method is not exhausted by the information already given. Analysis  of the osc i l lograms  
obtained allows a more  complete picture to be obtained by the s t ruc ture  of the inhomogeneous fluidized bed. In 
par t icu lar ,  in in terpret ing the osc i l lograms ,  downward motion of the individual bubbles is observed (downward 
motion associa ted with coalescence of the bubbles was noted in [1]). 
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Fig. 4. Effect of gas velocity w, m/sec,  on the local f r e -  
quency (a) and velocity of bubble motion Co): 1) frequency, 
sec -I, of bubble replacement at point 1; 2) frequency of 
"cap" dislodgement at points 6-7; 3) bubble velocity, m/ 
sec, along the fluidized-bed axis; 4) bubble velocity at a 
distance of 2 0 mm from the wall of the apparatus. 

The information obtained using the given method may be recorded and generalized by various means, 
ranging from f rame-by-f rame analysis of motion picture film to the use of analog and digital computers con- 
nected directly to the sensitive elements of the circuit.  
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